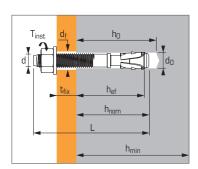


version zinguée 1/6


Cheville à expansion par vissage pour béton fissuré et non fissuré

APPLICATION

- Charpentes et poutres en bois et en acier
- Rails de guidage d'élévateurs
- Portes et portails industriels
- Cornières de soutien de maçonnerie
- Systèmes de stockage

MATIÈRE

Corps :

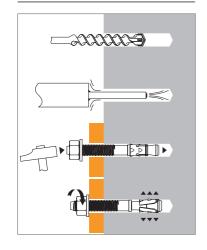
Acier façonné à froid, DIN 1654, partie 2 ou 4 / Zinc électrogalvanisé Zn5C/Fe (5 μ m), NFA 91102

Douille:

S355 MC selon NF EN 10-149-2

• Ecrou :

Classe de résistance de l'acier 6 ou 8, ISO 898-2


• Rondelle :

Acier, NF E 25513

Caractéristiques techniques

Dimensions	Repérage lettres	Prof. ancrage min. (mm)	Prof. enfoncet (mm) hnom	Epais. max. pièce à fixer (mm) t _{fix}	Prof. perçage (mm) ho	Epais. min. support (mm) hmin	Ø filetage (mm)	Ø perçage (mm)		Long. totale cheville (mm)	Couple de serrage (Nm) T _{inst}	Code
8X65/5	В			5						65		057763
8X75/15	D			15						75		057764
8X90/30	Е	46	51	30	60	100	8	8	9	90	20	057765
8X120/60	G			60						120		057766
8X130/70	1			70						130		057788
10X85/5	D			5						85		057768
10X90/10	E			10						90		057769
10X100/20	F	60	68	20	75	120	10	10	12	100	45	057770
10X120/40	G	00	00	40	/3	120	10	10	16	120	45	057771
10X140/60	1			60						140		057772
10X160/80	-			80						160		057773
12X100/5	E			5						100		057774
12X105/10	F			10						105		057775
12X115/20	G	70	80	20	90	140	12	12	14	115	60	057776
12X135/40	1	/ 0	00	40	30	140	'L	''-	17	135	00	057777
12X155/60	J			60						155		057778
12X180/85	L			85						180		057779
16X145/25	1			25						145		057781
16X170/50	K	85	98	50	110	170	16	16	18	170	110	057782
16X180/60	L			60						180		057783
20X170/30	K			30						170		057785
20X200/60	М	100	113	60	130	200	20	20	22	200	160	057786
20X220/80	0			80						220		057787

METHODE DE POSE

Propriétés mécaniques des chevilles							
Dimensions M8 M10 M12 M16 M20							
Section au-dessus du cône							
f _{uk} (N/mm ²)	Résistance à la traction min.	900	830	830	720	600	
f _{yk} (N/mm ²)	Limite d'élasticité	800	670	670	580	580	
As (mm ²)	Section résistante	22,9	35,3	45,4	88,2	165,1	
Partie filetée							
f_{uk} (N/mm 2)	Résistance à la traction min.	750	730	730	600	500	
$\mathbf{f_{yk}}$ (N/mm ²)	Limite d'élasticité	680	580	580	480	410	
As (mm ²)	Section résistante	36,6	58	84,3	156	245	
W el (mm ³)	Module d'inertie en flexion	31,23	62,3	109,17	277,47	540,9	
M ⁰ _{rk,s} (Nm)	Moment de flexion caractéristique	21	36	63	133	222	
M (Nm)	Moment de flexion admissible	8,7	14,7	25,8	54,4	90,5	

FIX Z XTREM

Les charges spécifiées sur cette page permettent de juger les performances du produit, mais ne peuvent pas être utilisées pour le dimensionnement. Il faut utiliser les performances données dans les pages suivantes (3/6 à 6/6).

Charges moyennes de ruine ($N_{Ru,m}$, $V_{Ru,m}$)/résistances caractéristiques (N_{Rk} , V_{Rk}) en kN

Les charges moyennes de ruine et les résistances caractéristiques sont issues des résultats d'essais dans les conditions admissibles d'emploi.

TRACTION

Dimensions	M8	M10	M12	M16	M20
Béton non fissuré (C20	/25)				
h _{ef}	46	60	70	85	100
$N_{Ru,m}$	15,8	26,1	35,5	47,5	60,1
N_{Rk}	9,1	21,2	29,8	40,3	45,0
Béton fissuré (C20/25)					
h _{ef}	46	60	70	85	100
$N_{\text{Ru,m}}$	10,7	16,9	25,7	38,9	60,9
N_{Rk}	6,8	13,8	20,7	28,5	52,2

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20
Béton fissuré et no	on fissuré				
$V_{Ru,m}$	16,1	19,6	26,6	55,4	85,0
V _{Rk}	14,9	16,6	21,2	46,7	79,2

Charges limites ultimes (N_{Rd}, V_{Rd}) pour une cheville en pleine masse en kN

$$N_{Rd} = \frac{N_{Rk} *}{\gamma_{Mc}}$$

*Valeurs issues d'essais

$$V_{Rd} = \frac{V_{Rk} *}{\gamma_{Ms}}$$

TRACTION

Dimensions	M8	M10	M12	M16	M20
Béton non fissuré (C2	(0/25)				
h _{ef}	46	60	70	85	100
N _{Rd}	6,1	14,1	19,9	26,9	30,0
Béton fissuré (C20/2	5)				
h _{ef}	46	60	70	85	100
N _{Rd}	4,5	9,2	13,8	19,0	34,8
1 E					

 $\gamma_{Mc} = 1,5$

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20			
Béton fissuré et non fissuré								
V _{Rd}	11,9	13,3	16,9	37,4	52,8			
$\gamma_{\rm Ms} = 1.25$ pour M8 à M16 et $\gamma_{\rm Ms} = 1.5$ pour M20								

 $\gamma_{Ms} = 1.25$ hour Mp a M10 et $\gamma_{Ms} = 1.5$ hour M20

Charges recommandées (N_{rec}, V_{rec}) pour une cheville en pleine masse en kN

$$N_{rec} = \frac{N_{Rk} *}{\gamma_{M} \cdot \gamma_{F}}$$

*Valeurs issues d'essais

$$V_{rec} = \frac{V_{Rk} *}{\gamma_{M. \gamma F}}$$

TRACTION

Dimensions	M8	M10	M12	M16	M20
Béton non fissuré (C20/	(25)				
h _{ef}	46	60	70	85	100
N _{rec}	4,3	10,1	14,2	19,2	21,4
Béton fissuré (C20/25)					
h _{ef}	46	60	70	85	100
N _{rec}	3,2	6,6	9,9	13,6	24,9

 $\gamma_{Mc} = 1,5$

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20		
Béton fissuré et non fissuré							
V _{rec}	8,5	9,5	12,1	26,7	37,7		
4.05 140	` N440 ·	4 -	1.400				

 $\gamma_{Ms} = 1,25$ pour M8 à M16 et $\gamma_{Ms} = 1,5$ pour M20

version zinguée 3/6

SPIT Méthode CC (valeurs issues de l'ATE)

TRACTION en kN

¬ Résistance à la rupture extraction-glissement

$$N_{Rd,p} = N_{Rd,p}^0$$
. f_b

N ^O Rd,p	Résistance	Résistance à l'ELU - rupture extraction-glissement							
Dimensions	M8	M8 M10 M12 M16 M20							
Béton non fissuré									
h _{ef}	46	60	70	85	100				
N ⁰ _{Rd,p} (C20/25)	6,0	13,3	20,0	26,7	-				
Béton fissuré									
h _{ef}	46	60	70	85	100				
N ⁰ _{Rd,p} (C20/25)	3,3	6,0	10,7	13,3	20,0				
· _									

 $\gamma_{Mc} = 1.5$

¬ Résistance à la rupture cône béton

$$N_{Rd,c} = N_{Rd,c}^0$$
 . f_b . Ψ_s . $\Psi_{c,N}$

N ^O Rd,c	Résistance à l'ELU - rupture cône béton							
Dimensions	M8 M10 M12 M16 M20							
Béton non fissuré								
h _{ef}	46	60	70	85	100			
N ^o _{Rd,c} (C20/25)	10,5	15,6	19,7	26,3	33,6			
Béton fissuré								
h _{ef}	46	60	70	85	100			
N ^o _{Rd,c} (C20/25)	7,5	11,2	14,1	18,8	24,0			

 $\gamma_{Mc} = 1,5$

¬ Résistance à la rupture acier

N _{Rd,s}		Résistance à l'ELU - rupture acier							
Dimensions	M8	M10	M12	M16	M20				
$N_{Rd,s}$	11,3	19,8	25,8	43,7	66,1				

 $\gamma_{Ms}=1.4$ pour M8, $\gamma_{Mc}=1.48$ pour M10 à M16 et $\gamma_{Mc}=1.5$ pour M20

 $N_{Rd} = min(N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$ $\beta_N = N_{Sd} / N_{Rd} \le 1$

CISAILLEMENT en kN

¬ Résistance à la rupture béton en bord de dalle

$$V_{\text{Rd,c}} = V^0_{\text{Rd,c}}$$
 . f_b . $f_{\beta,\text{V}}$. $\Psi_{\text{S-C,V}}$

V ⁰ Rd,c	Résistance à l'ELU - rupture béton bord de dalle à la distance aux bords minimale (C _{min})								
Dimensions	M8 M10 M12 M16 M20								
Béton non fissuré									
h _{ef}	46	60	70	85	100				
C _{min}	50	60	60	90	100				
S _{min}	75	120	145	140	160				
V ⁰ _{Rd,c} (C20/25)	3,0	4,4	4,8	10,0	13,0				
Béton fissuré									
h _{ef}	46	60	70	85	100				
C _{min}	50	55	60	80	100				
S _{min}	75	90	145	110	130				
V^o_{Rd,c} (C20/25)	2,1	2,8	3,4	6,0	9,3				

 $\gamma_{Mc}=1,5$

¬ Résistance à la rupture par effet de levier

$$V_{Rd,cp} = V_{Rd,cp}^0$$
 . f_b . Ψ_s . $\Psi_{c,N}$

V ⁰ Rd,cp	d,cp Résistance à l'ELU - rupture par effet lev										
Dimensions	M8 M10 M12 M16 M20										
Béton non fissuré											
h _{ef}	46	60	70	85	100						
V ⁰ _{Rd,cp} (C20/25)	10,5	31,2	39,4	52,7	67,2						
Béton fissuré											
h _{ef}	46	60	70	85	100						
V ⁰ _{Rd,cp} (C20/25)	7,5	22,3	28,1	37,6	48,0						

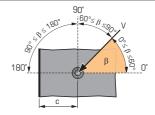
 $\gamma_{Mcp} = 1.5$

¬ Résistance à la rupture acier

$V_{Rd,s}$	Résistance à l'ELU - rupture acier							
Dimensions	M8	M10	M12	M16	M20			
V _{Rd,s}	10,8	12,6	18,1	36,0	40,7			

 $\gamma_{Ms}=1,27$ pour M8 à M12, $\gamma_{Mc}=1,25$ pour M16 et $\gamma_{Mc}=1,5$ pour M20

 $V_{Rd} = min(V_{Rd,c}; V_{Rd,cp}; V_{Rd,s})$ $\beta_V = V_{Sd} / V_{Rd} \le 1$


 $\beta_N + \beta_V \le 1,2$

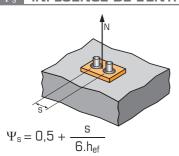
f_b INFLUENCE DE LA RESISTANCE DU BETON

Classe de béton	f _b	Classe de béton	f _b
C25/30	1,1	C40/50	1,41
C30/37	1,22	C45/55	1,48
C35/45	1,34	C50/60	1,55

$f_{\beta,V}$

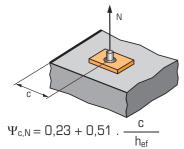
Angle β [°]	$f_{\beta,V}$
0 à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2

FIX Z XTREM


4/6 version zinguée

SPIT Méthode CC (valeurs issues de l'ATE)

$\Psi_{ m s}$ influence de l'entraxe sur la charge de traction pour la rupture cone beton

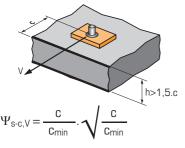


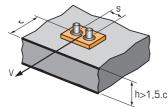
$$\begin{split} s_{\text{min}} &< s < s_{\text{cr,N}} \\ s_{\text{cr,N}} &= 3.h_{\text{ef}} \end{split}$$

 Ψ_{S} doit être utilisé pour chaque entraxe agissant sur le groupe de chevilles.

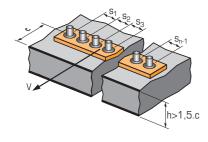
ENTRAXE S					le réduction Ψ_{s} et non fissuré
Dimensions	M8	M10	M12	M16	M20
50	0,68				
55	0,70	0,65			
75	0,77	0,71			
100	0,86	0,78			
120	0,93	0,83	0,79	0,74	0,70
140	1,00	0,89	0,83	0,77	0,73
180		1,00	0,93	0,85	0,80
210			1,00	0,91	0,85
255				1,00	0,93
280					0,97
300					1,00

$\Psi_{c,N}$ Influence de la distance aux bords sur la charge de traction pour la rupture cone beton




$$\begin{split} c_{min} &< c < c_{cr,N} \\ c_{cr,N} &= 1,5.h_{ef} \end{split}$$

 $\Psi_{\text{c},\text{N}}$ doit être utilisé pour chaque distance aux bords agissant sur le groupe de chevilles.


DISTANCES AUX		réduction $\Psi_{c,N}$ et non fissuré			
Dimensions	M8	M10	M12	M16	M20
50	1,00				
55		1,00			
60			1,00		
80				1,00	
100					1,00

$\Psi_{ extsf{s-c,V}}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE CISAILLEMENT POUR LA RUPTURE BORD DE DALLE

$$\Psi_{\text{s-c,V}} = \frac{3.\text{c} + \text{s}}{6.\text{c}_{\text{min}}} \cdot \sqrt{\frac{\text{c}}{\text{c}_{\text{min}}}}$$

¬ Cas d'une cheville unitaire

										fficient do ton fissu		
$\frac{C}{C_{min}}$	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
$\Psi_{ extsf{s-c,V}}$	1,00	1,31	1,66	2,02	2,41	2,83	3,26	3,72	4,19	4,69	5,20	5,72

¬ Cas d'un groupe de 2 chevilles

									Bét	ton fissu	ré et non	fissuré
S Cmin	_ 1,O	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
1,0	0,67	0,84	1,03	1,22	1,43	1,65	1,88	2,12	2,36	2,62	2,89	3,16
1,5	0,75	0,93	1,12	1,33	1,54	1,77	2,00	2,25	2,50	2,76	3,03	3,31
2,0	0,83	1,02	1,22	1,43	1,65	1,89	2,12	2,38	2,63	2,90	3,18	3,46
2,5	0,92	1,11	1,32	1,54	1,77	2,00	2,25	2,50	2,77	3,04	3,32	3,61
3,0	1,00	1,20	1,42	1,64	1,88	2,12	2,37	2,63	2,90	3,18	3,46	3,76
3,5		1,30	1,52	1,75	1,99	2,24	2,50	2,76	3,04	3,32	3,61	3,91
4,0			1,62	1,86	2,10	2,36	2,62	2,89	3,17	3,46	3,75	4,05
4,5				1,96	2,21	2,47	2,74	3,02	3,31	3,60	3,90	4,20
5,0					2,33	2,59	2,87	3,15	3,44	3,74	4,04	4,35
5,5						2,71	2,99	3,28	3,71	4,02	4,33	4,65
6,0						2,83	3,11	3,41	3,71	4,02	4,33	4,65

¬ Cas d'un groupe de 3 chevilles et plus

$$\Psi_{\text{s-c,V}} = \frac{3.c \, + \, \text{s}_1 \, + \, \text{s}_2 \, + \, \text{s}_3 \, + \ldots + \, \text{s}_{\text{n-1}}}{3.\text{n.c}_{\text{min}}} \cdot \sqrt{\frac{c}{c_{\text{min}}}}$$

Coefficient de réduction Ψ_{s-c.v}

version zinguée 5/6

SPIT Méthode CC (valeurs issues de l'ATE - Sismique catégorie C1)

TRACTION en kN

¬ Résistance à la rupture extraction-glissement

$$N_{Rd,p} = N_{Rd,p}^0$$
. f_b

N ^O Rd,p,C1	Résistance à l'ELU - rupture extraction-glissement									
Dimensions	M8	M10	M12	M16	M20					
Catégorie C1 - Cheville unitaire										
h _{ef}	46	60	70	85	100					
N ⁰ _{Rd,p,C1} (C20/25)	3,1	4,9	10,7	13,3	-					
Catégorie C1 - Groupe de	chevilles ⁽¹⁾									
h _{ef}	46	60	70	85	100					
N ⁰ _{Rd,p,C1} (C20/25)	2,7	4,2	9,1	11,3	17,0					
(1) Cas où plus d'une che	ville du aroupe	est soum	nise à un e	ffort de tr	action					

 $^{(1)}$ Cas où plus d'une cheville du groupe est soumise à un effort de traction $\gamma_{Mc}=1,\!5$

¬ Résistance à la rupture cône béton

$$N_{Rd.c} = N_{Rd.c}^{0}$$
 . f_b . Ψ_s . $\Psi_{c.N}$

N ⁰ Rd,c,C1		Ré	Résistance à l'ELU - cône béton M10 M12 M16 M20 60 70 85 100 9,5 11,9 16,0 20,4					
Dimensions	M8	M10	M12	M16	6 M20 100 0 20,4			
Catégorie C1 - Cheville unit	aire							
h _{ef}	46	60	70	85	100			
N ⁰ _{Rd,c,C1} (C20/25)	6,2	9,5	11,9	16,0	20,4			
Catégorie C1 - Groupe de cl	evilles ⁽¹⁾							
h _{ef}	46	60	70	85	100			
N ⁰ _{Rd,c,C1} (C20/25)	5,4	8,4	10,5	14,1	18,0			

 $^{(1)}$ Cas où plus d'une cheville du groupe est soumise à un effort de traction $\gamma_{Mc}=1,5$

¬ Résistance à la rupture acier

N _{Rd,s,C1}	Résistance à l'ELU - rupture acier							
Dimensions	M8	M10	M12	M16	M20			
N _{Rd,s,C1}	13,2	19,8	25,8	43,7	66,1			

⁽¹⁾ Cas où plus d'une cheville du groupe est soumise à un effort de traction $\gamma_{Ms}=1,4$ pour M8, $\gamma_{Mc}=1,48$ pour M10 à M16 et $\gamma_{Mc}=1,5$ pour M20

CISAILLEMENT en kN

¬ Résistance à la rupture béton en bord de dalle

$$V_{Rd,c} = V_{Rd,c}^0$$
. f_b . $f_{\beta,V}$. $\Psi_{S-C,V}$

V ⁰ _{Rd,c,C1}	Résistance à l'ELU - rupture béton bord de dalle à la distance aux bords minimale (C _{min})									
Dimensions	M8	M10	M12	M16	M20					
Catégorie C1 - Cheville unitaire										
h _{ef}	46	60	70	85	100					
C _{min}	50	55	60	80	100					
Smin	75	90	145	110	130					
V ⁰ _{Rd,c,C1} (C20/25)	2,1	3,6	7,4	8,4	11,4					
Catégorie C1 - Groupe de ch	evilles ⁽¹⁾									
h _{ef}	46	60	70	85	100					
C _{min}	50	65	100	100	115					
Smin	75	90	145	110	130					
V ⁰ _{Rd,c,C1} (C20/25)	1,8	3,0	6,3	7,1	9,7					

 $^{(1)}$ Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement $\gamma_{Mc}=1,5$

¬ Résistance à la rupture par effet de levier

$$V_{Rd,cp} = V_{Rd,cp}^0$$
 . f_b . Ψ_s . $\Psi_{c,N}$

$V^{0}_{Rd,cp,C1}$		Résistance à l'ELU - rupture par effet levier					
Dimension	าร	M8	M10	M12	M16	M20	
Catégorie C1 - Cheville unitaire							
h _{ef}		46	60	70	85	100	
$V^0_{Rd,cp,C1}$	(C20/25)	6,2	19,0	23,9	32,0	40,8	
Catégorie C1 - Groupe de chevilles (1)							
h _{ef}		46	60	70	85	100	
$V^{0}_{Rd,cp,C1}$	(C20/25)	5,4	16,7	21,1	28,2	36,0	
(1) 0							

 $^{(1)}$ Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement $\gamma_{Mc}=1,5$

¬ Résistance à la rupture acier (2)

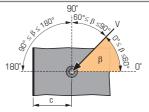
$V_{Rd,s,C1}$		Rési	stance à l'	ELU - rupt	ure acier	
Dimensions	M8	M10	M12	M16	M20	
Catégorie C1 - Cheville unitaire						
V _{Rd,s,C1}	4,8	12,6	18,1	36,0	40,7	
Catégorie C1 - Groupe de chevilles ⁽¹⁾						
V _{Rd,s,C1}	4,1	10,7	15,4	30,6	34,6	

(1) Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement

(2) Condition trou de passage rempli

 $\gamma_{Ms}=$ 1,25 pour M8 et M16, $\gamma_{Mc}=$ 1,27 pour M10 et M12 et $\gamma_{Mc}=$ 1,5 pour M20

$$\begin{split} \textbf{N}_{Rd,\text{C1}} &= min(\textbf{N}_{Rd,p,\text{C1}} \; ; \; \textbf{N}_{Rd,c,\text{C1}} \; ; \; \textbf{N}_{Rd,s,\text{C1}}) \\ \beta_N &= N_{Sd} \; / \; N_{Rd,\text{C1}} \leq 1 \end{split}$$


 $\begin{aligned} V_{Rd,C1} &= min(V_{Rd,c,C1} \; ; \; V_{Rd,cp,C1} \; ; \; V_{Rd,s,C1}) \\ \beta_V &= V_{Sd} \; / \; V_{Rd,C1} \leq 1 \end{aligned}$

$\beta_N + \beta_V \le 1,2$

f_b INFLUENCE DE LA RESISTANCE DU BETON

Classe de béton	f _b	Classe de béton	f _b
C25/30	1,1	C40/50	1,41
C30/37	1,22	C45/55	1,48
C35/45	1,34	C50/60	1,55

Angle β [°]	$f_{\beta,V}$
0 à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2

FIX Z XTREM

SPIT Méthode CC (valeurs issues de l'ATE - Sismique catégorie C2)

TRACTION en kN

¬ Résistance à la rupture extraction-glissement

 $N_{Rd,p,C2} = N_{Rd,p,C2}$. f_b

N ^O Rd,p,C2	Résistance	à l'ELU - rı	ipture ext	raction-gli	ssement
Dimensions	M8	M10	M12	M16	M20
Catégorie C2 - Cheville u	nitaire				
h _{ef}	46	60	70	85	100
N ⁰ _{Rd,p,C2} (C20/25)	NA	1,9	4,0	12,0	17,1
Catégorie C2 - Groupe de chevilles (1)					
h _{ef}	46	60	70	85	100
N ⁰ _{Rd,p,C2} (C20/25)	NA	1,6	3,4	10,2	14,5
(1) 0				CC I I I	

 $^{(1)}$ Cas où plus d'une cheville du groupe est soumise à un effort de traction $\gamma_{Mc}=1,5$

¬ Résistance à la rupture cône béton

 $N_{Rd,c,C2} = N_{Rd,c,C2}^0$. f_b . Ψ_s . $\Psi_{c,N}$

N ^O _{Rd,c,C2} Résistance à l'ELU - cône béto					ìne béton
Dimensions	M8	M10	M12	M16	M20
Catégorie C2 - Cheville unitaire					
h _{ef}	46	60	70	85	100
N ⁰ _{Rd,c,C2} (C20/25)	NA	9,5	11,9	16,0	20,4
Catégorie C2 - Groupe de chevilles (1)					
h _{ef}	46	60	70	85	100
N ⁰ _{Rd,c,C2} (C20/25)	NA	8,4	10,5	14,1	18,0
(4) 0) 1 11 1 11				rr . 1 .	

 $^{(1)}$ Cas où plus d'une cheville du groupe est soumise à un effort de traction $\gamma_{Mc}=1,5$

¬ Résistance à la rupture acier

N _{Rd,s,C2}		Rési	stance à l	'ELU - rupt	ure acier
Dimensions	M8	M10	M12	M16	M20
N _{Rd,s,C2}	NA	19,5	25,5	43,1	66,1
(4) 0 \ 1 1 1 1				rr	

⁽¹⁾ Cas où plus d'une cheville du groupe est soumise à un effort de traction $\gamma_{Ms}=1,5$ pour M10, $\gamma_{Mc}=1,48$ pour M12 et M16 et $\gamma_{Mc}=1,5$ pour M20

CISAILLEMENT en kN

¬ Résistance à la rupture béton en bord de dalle

 $V_{Rd,c,C2} = V_{Rd,c,C2}^0$. f_b . $f_{\beta,V}$. $\Psi_{S-C,V}$

V ⁰ Rd,c,C2	Résista	nce à l'ELU à la dista	- rupture nce aux bo					
Dimensions	M8	M10	M12	M16	M20			
Catégorie C2 - Cheville unita	Catégorie C2 - Cheville unitaire							
h _{ef}	46	60	70	85	100			
C _{min}	50	55	60	80	100			
Smin	40	50	100	100	100			
V⁰_{Rd,c,C2} (C20/25)	NA	3,6	7,4	8,4	11,4			
Catégorie C2 - Groupe de ch	evilles ⁽¹⁾							
h _{ef}	46	60	70	85	100			
C _{min}	50	65	100	100	115			
S _{min}	40	50	100	100	100			
V ⁰ _{Rd,c,C2} (C20/25)	NA	3,0	6,3	7,1	9,7			

 $^{(1)}$ Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement $\gamma_{Mc}=1,5$

¬ Résistance à la rupture par effet de levier

 $V_{Rd,cp,C2} = V^0_{Rd,cp,C2}$. f_b . Ψ_s . $\Psi_{c,N}$

V ⁰ Rd,cp,C2	Résistance à l'ELU - rupture par effet levier				
Dimensions	M8	M10	M12	M16	M20
Catégorie C2 - Cheville unitaire					
h _{ef}	46	60	70	85	100
V ⁰ _{Rd,cp,C2} (C20/25)	NA	19,0	23,9	32,0	40,8
Catégorie C2 - Groupe de chevilles (1)					
h _{ef}	46	60	70	85	100
V ⁰ _{Rd,cp,C2} (C20/25)	NA	16,7	21,1	28,2	36,0

 $^{(1)}$ Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement $\gamma_{Mc}=1,5$

¬ Résistance à la rupture acier (2)

8 M1	0 M12	M16	M20		
		141 10	IVIZU		
Catégorie C2 - Cheville unitaire					
A 7,6	11,0	27,1	29,8		
Catégorie C2 - Groupe de chevilles ⁽¹⁾					
A 6,5	9,4	23,1	25,3		
	A 6,5	A 6,5 9,4	(1)		

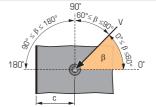
(1) Cas où plus d'une cheville du groupe est soumise à un effort de cisaillement

(2) Condition trou de passage rempli

 $\gamma_{Ms}=1,27$ pour M10 et M12, $\gamma_{Mc}=1,25$ pour M16 et $\gamma_{Mc}=1,5$ pour M20

 $\begin{aligned} V_{Rd,C2} &= min(V_{Rd,c,C2} \; ; \; V_{Rd,cp,C2} \; ; \; V_{Rd,s,C2}) \\ \beta_V &= V_{Sd} \; / \; V_{Rd,C2} \leq 1 \end{aligned}$

$$\begin{split} N_{Rd,C2} = min(N_{Rd,p,C2} \; ; \; N_{Rd,c,C2} \; ; \; N_{Rd,s,C2}) \\ \beta_N = N_{Sd} \; / \; N_{Rd,C2} \leq 1 \end{split}$$


 $\beta_N + \beta_V \le 1.2$

f_b INFLUENCE DE LA RESISTANCE DU BETON

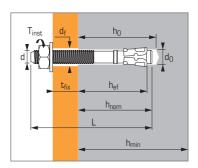
Classe de béton	f _b	Classe de béton	f _b
C25/30	1,1	C40/50	1,41
C30/37	1,22	C45/55	1,48
C35/45	1,34	C50/60	1,55

Angle β [°]	f _{β,} ν
0 à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2

M12

M10

Cheville à expansion par vissage pour béton fissuré et non fissuré



APPLICATION

- Charpentes et poutres en bois et
- Rails de guidage d'élévateurs
- Cornières de soutien de
- Systèmes de stockage

en acier

Portes et portails industriels

- maçonnerie

MATIÈRE

Corps M6-M16 :

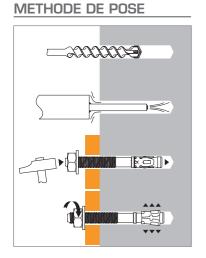
Acier N° 1.4404 (A4), 1.4578, NF EN 10088.3

Douille :

Acier N° 1.4404 laminé à froid, NF EN 10088.3

Ecrou:

Acier inoxydable A4-80, NF EN 20898-2


- Rondelle :

Acier inoxydable A4, NF EN 20898

Caractéristiques techniques

Dimensions	Sa	P	rofondeur	d'ancraç	je minimu	m	P	rofondeur	d'ancrag	e maximu	m	Ø	Ø	Ø	Long.	Couple	Code
	Repérage lettres	Prof. ancrage min.	Prof. enfonce ^t	Epais. max. pièce à fixer	Prof. perçage	Epais. min. support	Prof. ancrage max.	Prof. enfonce ^t	Epais. max. pièce à fixer	Prof. perçage	Epais. min. support	filetage	perçage	passage	totale cheville	de serrage	
	Œ	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Nm)	
		hef	h _{nom}	tfix	ho	h _{min}	hef	h _{nom}	tfix	ho	h _{min}	d	do	df	L	Tinst	
6X55/15*	-	25,6	35	15	41	100	35	45	5	51	100	6	6	8	55	10	054270
8X55/5	-			5					-						55		050441
8X70/20-7	С	35	40	20	52	400	40	55	7	65	100			9	70	20	054610
8X90/40-27	Е	35	42	40	52	100	48	55	27	65	100	8	8	9	90	20	055343
8X130/80-67	Н			80					67						130		050367
10X65/5	-			5					-						65		050466
10X75/15	С	40		15	62	400	58	66	-	78	116	40	40	12	75	35	054630
10X95/35-20	Е	42	50	35	02	100	38	00	20	/8	110	10	10	12	95	33	054640
10X120/60-45	G			60					45						120		050442
12X80/5	-			5					-						80		055344
12X100/25-6	Е	50	60	25	75	100	70	80	6	95	140	12	12	14	100	50	055345
12X115/40-21	G	30	DU	40	/5	100	///	80	21	90	140	12	12	14	115	50	055394
12X140/65-46	Ι			65					46						140		054680
16X125/30-8	G			30					8						125		050443
16X150/55-33	1	64	70	55	95	128	86	100	33	117	172	16	16	18	150	100	054700
16X170/75-53	K			75					53						170		050444

^{*} Non visé par l'ATE

Propriétés mécaniques des chevilles M8 Dimensions

Section au-de	essus du cône					
f _{uk} (N/mm ²)	Résistance à la traction min.	900	900	900	900	880
f _{yk} (N/mm ²)	Limite d'élasticité	780	780	780	780	750
As (mm ²)	Section résistante	-	24,6	41,9	58,1	107,5
Partie filetée						
f _{uk} (N/mm ²)	Résistance à la traction min.	620	620	620	620	580
f _{yk} (N/mm ²)	Limite d'élasticité	420	420	420	420	330
As (mm ²)	Section résistante	20,1	36,6	58	84,3	157
Wel (mm ³)	Module d'inertie en flexion	12,71	31,23	62,3	109,17	277,47
M ⁰ _{rk,s} (Nm)	Moment de flexion caractéristique	9,45	23	46	81	193
M (Nm)	Moment de flexion admissible	3,7	9,4	18,8	33,1	78,8

FIX Z - A4

Les charges spécifiées sur cette page permettent de juger les performances du produit, mais ne peuvent pas être utilisées pour le dimensionnement. Il faut utiliser les performances données dans les pages suivantes (3/4 et 4/4).

Charges moyennes de ruine ($N_{Ru,m}$, $V_{Ru,m}$)/résistances caractéristiques (N_{Rk} , V_{Rk}) en kN

Les charges moyennes de ruine et les résistances caractéristiques sont issues des résultats d'essais dans les conditions admissibles d'emploi.

TRACTION

Dimensions	M6	M8	M10	M12	M16
Béton non fissuré					
h _{ef,min}	25,6	35	42	50	64
$N_{Ru,m}$	4,5	8,0	9,9	13,6	24,1
N_{Rk}	4,5	8,0	9,9	13,6	24,1
h _{ef,max}	35	48	58	70	86
$N_{Ru,m}$	9,4	22,0	23,0	26,3	53,6
N _{Rk}	7,0	17,2	19,2	25,1	44,1
Béton fissuré					
h _{ef,min}	-	35	42	50	64
$N_{Ru,m}$	-	12,5	13,1	18,6	29,6
N _{Rk}	-	7,5	9,1	14,2	24,8
h _{ef,max}	-	48	58	70	86
$N_{Ru,m}$	-	15,9	20,3	29,2	54,2
N _{Rk}	-	14,7	18,8	27,0	49,5

CISAILLEMENT

Dimensions	M6	M8	M10	M12	M16	
Béton fissuré et non fissuré						
$V_{Ru,m}$	7,4	18,2	29,2	43,2	69,1	
V_{Rk}	6,2	17,3	25	36,1	51,3	

Charges limites ultimes (N_{Rd}, V_{Rd}) pour une cheville en pleine masse en kN

$$N_{Rd} = \frac{N_{Rk} *}{\gamma_{Mc}}$$

*Valeurs issues d'essais

$$V_{Rd} = \frac{V_{Rk} *}{\gamma_{Ms}}$$

TRACTION

Dimensions	M6	M8	M10	M12	M16
Béton non fissuré					
h _{ef,min}	25,6	35	42	50	64
N _{Rd}	2,5	5,3	6,6	9,1	16,1
h _{ef,max}	35	48	58	70	86
N _{Rd}	3,8	11,5	12,8	14,3	29,4
Béton fissuré					
h _{ef,min}	-	35	42	50	64
N _{Rd}	-	5,0	6,1	9,5	16,5
h _{ef,max}	-	48	58	70	86
N _{Rd}	-	9,8	12,5	18,0	33,0
$\gamma_{Mc} = 1,5$					

CISAILLEMENT

Dimensions	M6	M8	M10	M12	M16			
Béton fissuré et non fissuré								
V _{Rd}	4,1	11,5	16,7	24,1	28,5			
$\gamma_{Ms} = 1,5 \text{ pour M6 à}$	$y_{Ms} = 1,5$ pour M6 à M12 et $y_{Ms} = 1,8$ pour M16							

Charges recommandées (Nrec, Vrec) pour une cheville en pleine masse en kN

$$N_{rec} = \frac{N_{Rk} *}{\gamma_{M} \cdot \gamma_{I}}$$

*Valeurs issues d'essais

$$V_{rec} = \frac{V_{Rk} *}{\gamma_{M} \cdot \gamma_{F}}$$

TRACTION

Dimensions	M6	M8	M10	M12	M16
Béton non fissuré (C20,	/25)				
h _{ef,min}	25,6	35	42	50	64
N _{rec}	1,7	3,8	4,7	6,5	11,5
h _{ef,max}	35	48	58	70	86
N _{rec}	2,7	8,2	9,1	10,2	21,0
Béton fissuré (C20/25)					
h _{ef,min}	-	35	42	50	64
N _{rec}	-	3,6	4,3	6,8	11,8
h _{ef,max}	-	48	58	70	86
N _{rec}	-	7,0	9,0	12,8	23,6

 $\gamma_F = 1.4 \; ; \; \gamma_{Mc} = 1.5$

CISAILLEMENT

Dimensions	M6	M8	M10	M12	M16		
Béton fissuré et non fissuré							
V _{rec}	2,9	8,2	11,9	17,2	20,4		
vr – 1.5 pour M6 à M12 et vMs – 1.8 pour M16							

SPIT Méthode CC (valeurs issues de l'ATE)

TRACTION en kN

¬ Résistance à la rupture extraction-glissement

$$N_{Rd,p} = N_{Rd,p}^0$$
. f_b

N ^O Rd,p		Résistance à l'ELU - rupture extraction-glissement							
Dimensio	ns	M8	M10	M12	M16				
h _{ef,min}		35	42	50	64				
h _{ef,max}		48	58	70	86				
Béton non f	Béton non fissuré (C2O/25)								
N ^O Rd,p	(h _{ef,min})	6,0	6,0	8,0	13,3				
$N^{O}_{Rd,p}$	(h _{ef,max})	8,0	10,7	10,7	20,0				
Béton fissu	ré (C20/25)								
$N^{O}_{Rd,p}$	(h _{ef,min})	2,0	4,0	5,0	8,0				
$N^{O}_{Rd,p}$	(h _{ef,max})	2,7	5,0	6,0	10,7				

 $\gamma_{Mc} = 1.5$

¬ Résistance à la rupture cône béton

$$N_{Rd,c} = N^0_{Rd,c}$$
 . f_b . Ψ_s . $\Psi_{c,N}$

béton 16 34
14
• •
36
7,2
3,8
2,3
9,1

 $\gamma_{Mc} = 1,5$

¬ Résistance à la rupture acier

N _{Rd,s}		Résistance à l'ELU - rupture acier						
Dimensions	M8	M10	M12	M16				
N _{Rd.s}	8,5	14,4	20,0	29,7				

 $\gamma_{Ms} = 1.8$ pour M8 à M12 et $\gamma_{Ms} = 2.1$ pour M16

 $N_{Rd} = min(N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$ $\beta_N = N_{Sd} / N_{Rd} \le 1$

CISAILLEMENT en kN

¬ Résistance à la rupture béton en bord de dalle

$$V_{Rd,c} = V^0_{Rd,c}$$
 . f_b . $f_{\beta,V}$. $\Psi_{S\text{-}C,V}$

V ⁰ Rd,c	Résistance à	l'ELU - ruptui		d de dalle à c bords mini			
Dimensions M8 M10 M12 M16							
Profondeu	r d'ancrage minimu	m					
h _{ef,min}		35	42	50	64		
C _{min}		60	65	100	100		
Smin		60	75	170	150		
V ^O Rd,c	(C20/25)	3,3	4,1	8,7	10,1		
	r d'ancrage maximu	ım					
h _{ef,max}		48	58	70	86		
C _{min}		60	65	90	105		
Smin		50	55	75	90		
V ⁰ Rd,c	(C20/25)	3,7	4,4	8,2	11,8		

 $\gamma_{Mc} = 1.5$

¬ Résistance à la rupture par effet de levier

$$V_{Rd,cp} = V_{Rd,cp}^0$$
 . f_b . Ψ_s . $\Psi_{c,N}$

V ⁰ _{Rd,cp}	Résistance à l'ELU - rupture par effet levier								
Dimensions	M8	M10	M12	M16					
Béton non fissuré C20/25)									
h _{ef,min}	35	42	50	64					
V ⁰ Rd,cp	7,0	9,1	11,9	34,4					
h _{ef, max}	48	58	70	86					
V ⁰ Rd,cp	11,2	14,8	39,4	53,6					
Béton fissuré C20/25)									
h _{ef,min}	35	42	50	64					
V ⁰ Rd,cp	5,0	6,5	8,5	24,6					
h _{ef, max}	48	58	70	86					
V ⁰ Rd,cp	8,0	10,6	28,1	38,3					

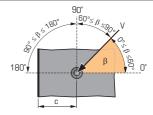
 $\gamma_{Mcp}=1,5$

¬ Résistance à la rupture acier

$V_{Rd,s}$	Résistance à l'ELU - rupture acie						
Dimensions	M8	M10	M12	M16			
$V_{Rd,s}$	8,2	13,1	18,9	25,8			

 $\gamma_{Ms} = 1.5$ pour M8 à M12 et $\gamma_{Ms} = 1.8$ pour M16

 $V_{Rd} = min(V_{Rd,c}; V_{Rd,cp}; V_{Rd,s})$ $\beta_V = V_{Sd} / V_{Rd} \le 1$


 $\beta_N + \beta_V \le 1,2$

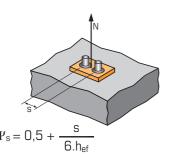
f_b INFLUENCE DE LA RESISTANCE DU BETON

Classe de béton	f _b	Classe de béton	f _b
C25/30	1,1	C40/50	1,41
C30/37	1,22	C45/55	1,48
C35/45	1,34	C50/60	1,55

f_{β,V} IN

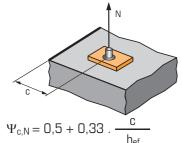
Angle β [°]	$f_{\beta,V}$
O à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2

FIX Z - A4


4/4 version inoxydable

SPIT Méthode CC (valeurs issues de l'ATE)

INFLUENCE DE L'ENTRAXE SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON


 $s_{min} < s < s_{cr,N}$ $s_{cr,N} = 3.h_{ef}$

 Ψ_{S} doit être utilisé pour chaque entraxe agissant sur le groupe de chevilles.

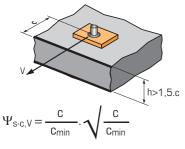
ENTRAXE S	Coefficient de réduction Ψ_{i} Profondeur d'ancrage minimum									
Dimensions	M8	M10	M12	M16						
60	0,78									
75	0,86	0,80								
100	0,98	0,90	0,83	0,76						
105	1,00	0,92	0,85	0,77						
110		0,94	0,87	0,79						
125		1,00	0,92	0,83						
150			1,00	0,89						
170				0,94						
192				1,00						

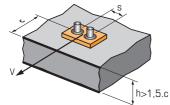
ENTRAXE S	Profo	Coefficie ndeur d'a	nt de rédu ncrage m	
Dimensions	M8	M10	M12	M16
50	0,67			
55	0,69	0,66		
75	0,76	0,72	0,68	
90	0,81	0,76	0,71	0,67
110	0,88	0,82	0,76	0,71
130	0,95	0,87	0,81	0,75
145	1,00	0,92	0,85	0,78
155		0,95	0,87	0,80
175		1,00	0,92	0,84
205			0,99	0,90
210			1,00	0,91
258				1,00

$\Psi_{c,N}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON

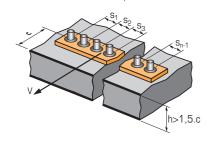
$\Psi_{c,N} = 0.5 + 0.33$.	U
$f_{C,N} = 0,0 + 0,00$.	hef
$c_{min} < c < c_{cr,N}$	i iei

DISTANCES Coefficient de rédu AUX BORDS C Profondeur d'ancrage												
M8	M10	M12	M16									
1,00												
	1,00											
		1,00										
			1,00									
	M8	M8 M10 1,00	1,00									


Coefficient de réduction $\Psi_{ m c}$ Profondeur d'ancrage maximu											
M8	M10	M12	M16								
0,91											
0,95	0,91										
1,00	0,96										
	1,00										
		0,94									
		1,00	0,90								
			1,00								
	M8 0,91 0,95	Profondeur d'a M8 M10 0,91 0,95 0,91 1,00 0,96	Profondeur d'ancrage n M8 M10 M12 0,91 0,95 0,91 1,00 0,96 1,00 0,94 0,94								


Coefficient de réduction Ψ_{s-c.v}

$c_{cr,N} = 1,5.h_{ef}$


 $\Psi_{\text{c,N}}$ doit être utilisé pour chaque distance aux bords agissant sur le groupe de chevilles.

$\Psi_{\text{s-c,V}}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE CISAILLEMENT POUR LA RUPTURE BORD DE DALLE

$$\Psi_{\text{s-c,V}} = \frac{3.\text{c} + \text{s}}{6.\text{c}_{\text{min}}} \cdot \sqrt{\frac{\text{c}}{\text{c}_{\text{min}}}}$$

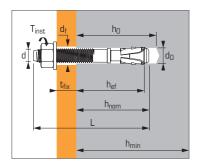
¬ Cas d'une cheville unitaire

Coefficient de réduction \ Béton fissuré et non fis												
$\frac{C}{C_{min}}$	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
Ψ _{s-c,V}	1,00	1,31	1,66	2,02	2,41	2,83	3,26	3,72	4,19	4,69	5,20	5,72

¬ Cas d'un groupe de 2 chevilles

									Bé	ton fissu	ré et non	fissuré
$\frac{S}{C_{min}} \frac{C}{C_{mir}}$	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
1,0	0,67	0,84	1,03	1,22	1,43	1,65	1,88	2,12	2,36	2,62	2,89	3,16
1,5	0,75	0,93	1,12	1,33	1,54	1,77	2,00	2,25	2,50	2,76	3,03	3,31
2,0	0,83	1,02	1,22	1,43	1,65	1,89	2,12	2,38	2,63	2,90	3,18	3,46
2,5	0,92	1,11	1,32	1,54	1,77	2,00	2,25	2,50	2,77	3,04	3,32	3,61
3,0	1,00	1,20	1,42	1,64	1,88	2,12	2,37	2,63	2,90	3,18	3,46	3,76
3,5		1,30	1,52	1,75	1,99	2,24	2,50	2,76	3,04	3,32	3,61	3,91
4,0			1,62	1,86	2,10	2,36	2,62	2,89	3,17	3,46	3,75	4,05
4,5				1,96	2,21	2,47	2,74	3,02	3,31	3,60	3,90	4,20
5,0					2,33	2,59	2,87	3,15	3,44	3,74	4,04	4,35
5,5						2,71	2,99	3,28	3,71	4,02	4,33	4,65
6,0						2,83	3,11	3,41	3,71	4,02	4,33	4,65

🥆 Cas d'un groupe de 3 chevilles et plus


$$\Psi_{\text{s-c,V}} = \frac{3.c \, + \, \text{s}_1 \, + \, \text{s}_2 \, + \, \text{s}_3 \, + \ldots + \, \text{s}_{\text{n-1}}}{3.n.c_{\text{min}}} \, . \, \sqrt{\frac{c}{c_{\text{min}}}}$$

Cheville à expansion par vissage à couple contrôlé, pour béton non fissuré

APPLICATION

- Cornières de soutien de maconnerie
- Systèmes de stockage

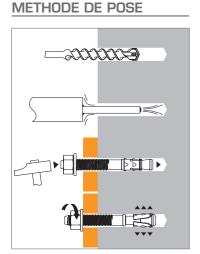
MATIÈRE

Corps M6-M20 :

Façonné à froid, NFA 35-053 / Zinc électrogalvanisé (5 µm)

Douille:

Façonnée à froid, NFA 35-231


Ecrou:

Classe de résistance de l'acier 6 ou 8, ISO 898-2

- Rondelle :

Acier, NF E 25513

- Charpentes et poutres en bois et
- Rails de guidage d'élévateurs
- Portes et portails industriels

Caractéristiques techniques

Dimensions	Sa	P	rofondeu	d'ancrag	je minimu	m	P	rofondeur	d'ancrag	je maximu	m	Ø	Ø	Ø	Long.	Couple	Code
	Repérage lettres	Prof. ancrage min.	Prof. enfonce ^t	Epais. max. pièce à fixer	Prof. perçage	Epais. min. support	Prof. ancrage max.	Prof. enfonce ^t	Epais. max. pièce à fixer	Prof. perçage	Epais. min. support	filetage	perçage	passage	totale cheville	de serrage	
	"	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Nm)	
01/45 = 1		h _{ef}	h _{nom}	t _{fix}	ho	h _{min}	h _{ef}	h _{nom}	t _{fix}	ho	h _{min}	d	do	df	L	T _{inst}	050510
6X45/5*	-			5					-						45	10	050510
6X55/15*	-	25,6	35	20	41	100	35	45	15	51	100	6	6	8	55		050520
6X85/45*	-			50			00		45	JI	100				85 64		050530 056100
6X64 percée* 8X55/5	-			5					-						55		057450
8X70/20-10	C		-	20					10						70		057451
8X90/40-30	E			40					30						90		057451
8X100/50-40	F	30	38	50	50	80	40	48	40	60	80	8	8	9	100	15	057453
8X115/65-55	G		00	65	00	00	"0	10	55	00	00				115	10	057454
8X130/80-70	Н			80					70						130		057455
8X160/110-100	J			110					100						160		057456
10X65/5	-			5					-						65		057460
10X75/15-5	С			15					5						75		057461
10X85/25-15	D			25					15						85		057462
10X95/36-26	Е			36					26						95		057463
10X110/50-40	F	40	50	50	60	100	50	60	40	70	100	10	10	12	110	30	057464
10X125/65-55	G			65					55						125		057465
10X140/80-70	1			80					70						140		057466
10X160/100-90	J			100					90						160		057467
12X80/5	-			5					-						80		057470
12X100/25-10	F			25					10						100		057471
12x115/40-25	G			40					25						115		057472
12x125/50-35	Н			50					35						125		057473
12X140/65-50	1	50	62	65	75	100	65	77	50	90	130	12	12	14	140	50	057474
12X160/85-70	J			85					70						160		057475
12X180/105-90	L			105					90						180		057576
12X220/145-130	0			145					130						220		057477
12X290/215-200*	-			215					200						290		057478
16X100/5	-			5					-						100		057480
16X125/30-15	G			30					15						125		057481
16X150/55-40	1			55					40						150		057482
16X170/75-60	K	65	80	75	95	130	80	95	60	110	160	16	16	18	170	100	057483
16X185/90-75	L			90					75						185		057484
16X235/140-125*	-			140					125						235		057485
16X300/205*	-			205					190						300		057486
20X125/10	-			10					-						125		057490
20X165/50-25	J	75	93	50	110	150	100	118	25	135	200	20	20	22	165	160	057491
20X220/105-80	N			105					80						220		057492

^{*} Non visé par l'ATE

Propriétés mécaniques des chevilles									
Dimension	S	M6	M8	M10	M12	M16	M20		
Section au-de	essus du cône								
f _{uk} (N/mm ²)	Résistance à la traction min.	700	750	750	750	700	600		
f _{yk} (N/mm ²)	Limite d'élasticité	580	600	600	600	570	570		
As (mm ²)	Section résistante	-	23,8	34,7	56,1	103,9	172		
Partie filetée									
$\mathbf{f_{uk}}$ (N/mm ²)	Résistance à la traction min.	600	650	650	650	600	580		
$\mathbf{f_{yk}}$ (N/mm ²)	Limite d'élasticité	420	420	420	420	480	330		
As (mm ²)	Section résistante	20,1	36,6	58	84,3	157	245		
$\mathbf{W_{el}}$ (mm 3)	Module d'inertie en flexion	12,71	31,23	62,3	109,17	277,47	540,9		
M ⁰ _{rk,s} (Nm)	Moment de flexion caractéristique	9	24	49	85	200	376		
M (Nm)	Moment de flexion admissible	3,7	9,8	20,0	34,7	81,6	153,5		

Les charges spécifiées sur cette page permettent de juger les performances du produit, mais ne peuvent pas être utilisées pour le dimensionnement. Il faut utiliser les performances données dans les pages suivantes (3/4 et 4/4).

Charges moyennes de ruine ($N_{Ru,m}$, $V_{Ru,m}$)/résistances caractéristiques (N_{Rk} , V_{Rk}) en kN

Les charges moyennes de ruine et les résistances caractéristiques sont issues des résultats d'essais dans les conditions admissibles d'emploi.

TRACTION

M6	M8	M10	M12	M16	M20				
Profondeur d'ancrage minimum									
25	30	40	50	65	75				
6,0	11,5	17,3	26,1	43,6	45,4				
4,5	8,7	12,3	21,5	35,1	37,7				
ximum									
35	40	50	65	80	100				
9,4	17,4	24,6	37,8	52,7	77,1				
7,0	15,7	20,2	31,7	47,0	62,8				
	25 6,0 4,5 eximum 35 9,4	nimum 25 30 6,0 11,5 4,5 8,7 eximum 35 40 9,4 17,4	25 30 40 6,0 11,5 17,3 4,5 8,7 12,3 eximum 35 40 50 9,4 17,4 24,6	25 30 40 50 6,0 11,5 17,3 26,1 4,5 8,7 12,3 21,5 eximum 35 40 50 65 9,4 17,4 24,6 37,8	nimum 25 30 40 50 65 6,0 11,5 17,3 26,1 43,6 4,5 8,7 12,3 21,5 35,1 eximum 35 40 50 65 80 9,4 17,4 24,6 37,8 52,7				

CISAILLEMENT

Dimensions	M6	M8	M10	M12	M16	M20
$V_{Ru,m}$	6,8	14,3	22,6	32,8	56,5	85,2
V _{Bk}	2,9	10,0	13,7	27,4	36,5	71,1

Charges limites ultimes (N_{Rd}, V_{Rd}) pour une cheville en pleine masse en kN

$$N_{Rd} = \frac{N_{Rk} *}{\gamma_{Mc}}$$

*Valeurs issues d'essais

$$V_{Rd} = \frac{V_{Rk} *}{\gamma_{Ms}}$$

TRACTION

Dimensions	M6	M8	M10	M12	M16	M20			
Profondeur d'ancrage minimum									
h _{ef}	25	30	40	50	65	75			
N _{Rd}	2,5	5,8	8,2	14,3	23,4	25,1			
Profondeur d'ancrag	e maximum								
h _{ef}	35	40	50	65	80	100			
N_{Rd}	3,8	10,5	13,5	21,1	31,3	41,8			
1 =									

 $\gamma_{Mc} = 1,5$

CISAILLEMENT

Dimensions	M6	M8	M10	M12	M16	M20		
V_{Rd}	2,3	8,0	11,0	21,9	29,2	47,4		
45. — 1.25 pour MS à M15 et s — 1.5 pour M20								

 $\gamma_{Ms} = 1,25$ pour M6 à M16 et $\gamma_{Ms} = 1,5$ pour M20

Charges recommandées (N_{rec}, V_{rec}) pour une cheville en pleine masse en kN

$$N_{rec} = \frac{N_{Rk} *}{\gamma_{M} \cdot \gamma_{F}}$$

*Valeurs issues d'essais

$$V_{rec} = \frac{V_{Rk} *}{\gamma_{M.\gamma F}}$$

TRACTION

Dimensions Profondeur d'ancrage r	M6	M8	M10	M12	M16	M20
h _{ef}	25	30	40	50	65	75
N _{rec}	1,7	4,2	5,9	10,2	16,7	18,0
Profondeur d'ancrage r	naximum					
h _{ef}	35	40	50	65	80	100
N _{rec}	2,7	7,5	9,6	15,1	22,4	29,9

 $\gamma_F=1.4$; $\gamma_{Mc}=1.5$

CISAILLEMENT

Dimensions	M6	M8	M10	M12	M16	M20
V _{rec}	1,7	5,7	7,8	15,7	20,9	33,9
vr - 1 25						

SPIT Méthode CC (valeurs issues de l'ATE)

TRACTION en kN

¬ Résistance à la rupture extraction-glissement

$$N_{Rd,p} = N^0_{Rd,p}$$
 . f_b

$N^{O}_{Rd,p}$	N ^O Rd,p Résistance à l'ELU - rupture extra								
Dimension	ons	M8	M10	M12	M16	M20			
Profondeur d'ancrage minimum									
h _{ef}		30	40	50	65	75			
N ^O Rd,p	(C20/25)	5,0	-	-	-	-			
Profondeu	r d'ancrage ma	ximum							
h _{ef}		40	50	65	80	100			
N ^O Rd,p	(C20/25)	-	-	-	-	-			
$\gamma_{Mc} = 1,5$									

¬ Résistance à la rupture cône béton

$$N_{\text{Rd,c}} = N_{\text{Rd,c}}^0$$
 . f_b . Ψ_{s} . $\Psi_{\text{c,N}}$

B.IO								
$N^{O}_{Rd,c}$			Résistance	e à l'ELU - I	rupture cô	ne béton		
Dimensions M8			M10	M12	M16	M20		
Profondeur d'ancrage minimum								
h _{ef}		30	40	50	65	75		
N ^O Rd,c	(C20/25)	5,5	8,5	11,9	17,6	21,8		
Profondeu	r d'ancrage maxir	num						
h _{ef}		40	50	65	80	100		
N ⁰ Rd,c	(C20/25)	8,5	11,9	17,6	24,0	33,6		

 $\gamma_{Mc} = 1,5$

¬ Résistance à la rupture acier

$V_{Rd,s}$		Résistance à l'ELU - rupture acier					
Dimensions	M8	M10	M12	M16	M20		
$V_{Rd,s}$	11,9	17,3	28,1	48,5	73,7		

 $\gamma_{Ms}=1,5$ pour M8 à M16 et $\gamma_{Ms}=1,4$ pour M20

 $N_{Rd} = min(N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$ $\beta_N = N_{Sd} / N_{Rd} \le 1$

CISAILLEMENT en kN

¬ Résistance à la rupture béton en bord de dalle

$$V_{\text{Rd,c}} = V^0_{\text{Rd,c}}$$
 . f_b . $f_{\beta,\text{V}}$. $\Psi_{\text{S-C,V}}$

V ⁰ Rd,c	Résistance à l'ELU - rupture béton bord de dalle à la distance aux bords minimale (C _{min})							
Dimension	ons	M8	M10	M12	M16	M20		
Profondeur d'ancrage minimum								
h _{ef}		30	40	50	65	75		
C _{min}		50	65	100	100	115		
S _{min}		40	50	100	100	100		
V ⁰ Rd,c	(C20/25)	2,7	4,6	9,7	11,1	15,1		
Profondeu	r d'ancrage maxir	num						
h _{ef}		40	50	65	80	100		
C _{min}		55	65	70	105	120		
Smin		45	60	70	90	100		
$V_{Rd,c}$	(C20/25)	3,3	4,8	6,0	12,5	17,0		

 $\gamma_{Mc} = 1,5$

¬ Résistance à la rupture par effet de levier

$$V_{Rd,cp} = V_{Rd,cp}^0$$
 . f_b . Ψ_s . $\Psi_{c,N}$

V ^O _{Rd,cp} Résista				ELU - rupt	ure par ef	fet levier	
Dimensio	ons	M8	M10	M12	M16	M20	
Profondeur d'ancrage minimum							
h _{ef}		30	40	50	65	75	
$V^0_{Rd,cp}$	(C20/25)	5,5	8,5	11,9	35,2	43,6	
	r d'ancrage maxir	num					
h _{ef}		40	50	65	80	100	
V ^O Rd,cp	(C20/25)	8,5	11,9	35,2	48,0	67,2	

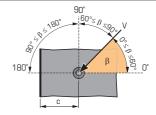
 $\gamma_{Mcp} = 1.5$

¬ Résistance à la rupture acier

V _{Rd,s}	Résistance à l'ELU - rupture aci										
Dimensions	M8	M10	M12	M16	M20						
V _{Rd s}	8.0	11 በ	21.9	29.2	47 4						

 $\gamma_{Ms}=1,\!25$ pour M8 à M16 et $\gamma_{Ms}=1,\!5$ pour M20

 $V_{Rd} = min(V_{Rd,c}; V_{Rd,cp}; V_{Rd,s})$ $\beta_V = V_{Sd} / V_{Rd} \le 1$

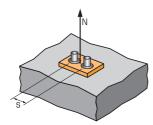

$\beta_N + \beta_V \le 1,2$

f_b INFLUENCE DE LA RESISTANCE DU BETON

Classe de béton	f _b	Classe de béton	f _b
C25/30	1,1	C40/50	1,41
C30/37	1,22	C45/55	1,48
C35/45	1,34	C50/60	1,55

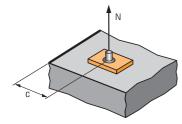
$f_{\beta,V}$

Angle β [°]	$f_{\beta,V}$
0 à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2



SPIT Méthode CC (valeurs issues de l'ATE)

INFLUENCE DE L'ENTRAXE SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON


 $s_{min} < s < s_{cr,N}$ $s_{cr,N} = 3.h_{ef}$

 Ψ_{S} doit être utilisé pour chaque entraxe agissant sur le groupe de chevilles.

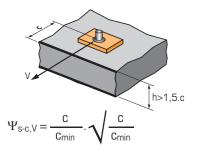
ENTRAXE S		Coefficient de réduction Ψ_{s} Profondeur d'ancrage minimum						
Dimensions	M8	M10	M12	M16	M20			
40	0,72							
50	0,78	0,71						
65	0,86	0,77						
90	1,00	0,88						
100		0,92	0,83	0,76	0,72			
120		1,00	0,90	0,81	0,77			
150			1,00	0,88	0,83			
180				0,96	0,90			
195				1,00	0,93			
225					1,00			

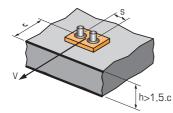
S 1	ENTRAXE S		Co Profondo		de réduc crage ma	-
)	Dimensions	M8	M10	M12	M16	M20
	45	0,69				
	60	0,75	0,70			
	70	0,79	0,73	0,68		
	90	0,88	0,80	0,73	0,69	
!	100	0,92	0,83	0,76	0,71	0,67
	120	1,00	0,90	0,81	0,75	0,70
}	150		1,00	0,88	0,81	0,75
	195			1,00	0,91	0,83
}	220				0,96	0,87
1	240				1,00	0,90
	300					1,00

$\Psi_{c,N}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON

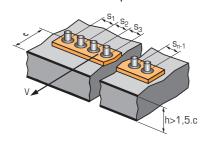
 $\Psi_{c,N} = 0.23 + 0.51$.

 $c_{min} < c < c_{cr,N}$ $c_{cr,N} = 1,5.h_{ef}$


 $\Psi_{\text{c.N}}$ doit être utilisé pour chaque distance aux bords agissant sur le groupe de chevilles.


DISTANCES AUX BORDS C		Coefficient de réduction $\Psi_{ extsf{c,I}}$ Profondeur d'ancrage minimun						
Dimensions	M8	M10	M12	M16	M20			
50	1,00							
65		1,00						
100			1,00					
100				1,00				
115					1,00			

DISTANCES AUX BORDS C	Coefficient de réduction $\Psi_{ extsf{c,N}}$ Profondeur d'ancrage maximum								
Dimensions	M8	M10	M12	M16	M20				
55	0,93								
60	1,00								
65		0,89							
70		0,94	0,78						
75		1,00	0,82						
100			1,00						
105				0,90					
110				0,93					
120				1,00	0,84				
130					0,89				
150					1,00				


Coefficient de réduction Ψ_{s-c.v}

$\Psi_{\text{s-c,V}}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE CISAILLEMENT POUR LA RUPTURE BORD DE DALLE

$$\Psi_{\text{s-c,V}} = \frac{3.\text{c} + \text{s}}{6.\text{c}_{\text{min}}} \cdot \sqrt{\frac{\text{c}}{\text{c}_{\text{min}}}}$$

¬ Cas d'une cheville unitaire

										В	éton non	fissuré
$\frac{C}{C_{min}}$	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
$\Psi_{s-c,V}$	1,00	1,31	1,66	2,02	2,41	2,83	3,26	3,72	4,19	4,69	5,20	5,72

¬ Cas d'un groupe de 2 chevilles

										В	éton non	fissuré
S Cmin	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
1,0	0,67	0,84	1,03	1,22	1,43	1,65	1,88	2,12	2,36	2,62	2,89	3,16
1,5	0,75	0,93	1,12	1,33	1,54	1,77	2,00	2,25	2,50	2,76	3,03	3,31
2,0	0,83	1,02	1,22	1,43	1,65	1,89	2,12	2,38	2,63	2,90	3,18	3,46
2,5	0,92	1,11	1,32	1,54	1,77	2,00	2,25	2,50	2,77	3,04	3,32	3,61
3,0	1,00	1,20	1,42	1,64	1,88	2,12	2,37	2,63	2,90	3,18	3,46	3,76
3,5		1,30	1,52	1,75	1,99	2,24	2,50	2,76	3,04	3,32	3,61	3,91
4,0			1,62	1,86	2,10	2,36	2,62	2,89	3,17	3,46	3,75	4,05
4,5				1,96	2,21	2,47	2,74	3,02	3,31	3,60	3,90	4,20
5,0					2,33	2,59	2,87	3,15	3,44	3,74	4,04	4,35
5,5						2,71	2,99	3,28	3,71	4,02	4,33	4,65
6,0						2,83	3,11	3,41	3,71	4,02	4,33	4,65

¬ Cas d'un groupe de 3 chevilles et plus

$$\Psi_{\text{s-c,V}} = \frac{3.c + s_1 + s_2 + s_3 + \ldots + s_{\text{n-1}}}{3.n.c_{\text{min}}} \cdot \sqrt{\frac{c}{c_{\text{min}}}}$$